L’orbitale atomico rappresenta lo spazio attorno al nucleo in cui vi è un’elevata probabilità di trovare l’elettrone. Questa elevata probabilità viene stimata essere superiore al 90%. Il motivo per cui non è possibile determinare con certezza la posizione di un elettone è riconducibile al principio d’indeterminazione di Heisenberg.
Gli orbitali atomici possono essere descritti attraverso dei numeri, chiamati numeri quantici. A ogni elettrone possono essere assegnati quattro numeri quantici chiamati:
- Numero quantico principale n
- Numero quantico secondario l
- Numero quantico magnetico m
- Numero quantico di spin s
Il numero quantico principale n descrive la distanza dell’elettrone dal nucleo. Esso può assumere valori interi positivi 1, 2, 3, 4, 5 ecc. Maggiore è il valore del numero quantico principale, maggiore è l’energia dell’elettrone.
Il numero quantico secondario l descrive la geometria dell’orbitale. I valori che può assumere sono interi e vanno da 0 a n-1. Il numero quantico l è anche detto di forma orbitale in quanto a uno specifico valore di l è associata una specifica geometria dell’orbitale.
- l=0 descrive l’orbitale s avente geometria sferica;
- l=1 descrive gli orbitali p aventi geometria bilobata;
- l=2 descrive gli orbitali d aventi geometria tetralobata;
- l=3 descrive gli orbitali f aventi geometria complessa;
Il numero quantico magnetico m descrive tutte le possibili orientazioni degli orbitali nello spazio. I valori che può assumere sono interi e vanno da -l a +l passando per lo 0.
Il numero quantico di spin s descrive la rotazione dell’elettrone attorno al proprio asse. I valori che può assumere sono pari a +1/2 o -1/2 a seconda se la rotazione avvenga in senso orario o antiorario.
CONCETTI CHIAVE:
- Il numero quantico principale n può assumere valori interi positivi 1; 2; 3; 4; 5 ecc.;
- Il numero quantico secondario l può assumere valori interi che vanno da 0 a n-1;
- Il numero quantico magnetico m può assumere valori interi che vanno da -l a +l passando per lo zero;
- Il numero quantico di spin s può assumere valori di +1/2 o -1/2.
| Valori di n | Valori di l | Valori di m |
| 1 | 0 | 0 |
| 2 | 0 | 0 |
| 1 | -1;0;+1 | |
| 3 | 0 | 0 |
| 1 | -1;0;+1 | |
| 2 | -2;-1;0;+1;+2 | |
| 4 | 0 | 0 |
| 1 | -1;0;+1 | |
| 2 | -2;-1;0;+1;+2 | |
| 3 | -3;-2;-1;0;+1;+2;+3 |
ESERCIZIO SVOLTO N.1
Dato il numero quantico principale n=1 determinare tutti i possibili valori di numero quantico secondario l e numero quantico magnetico m.
Come visto nella teoria, il numero quantico secondario l può assumere valori interi che vanno da 0 a n-1. Pertanto per n=1 l’unico valore che è possibile ottenere è l=0.
Il numero quantico magnetico m assume invece valori interi che vanno da -l a +l passando per lo 0. Dal momento che l è uguale a 0, è permesso un solo valore di m anch’esso uguale a 0.
Risultato:
n=1; l=0; m=0
ESERCIZIO SVOLTO N.2
Dato l=2 determinare tutti i possibili valori di n e m.
Dal momento che il numero quantico secondario l può assumere valori interi che vanno da 0 a n-1, se il valore di l è uguale a 2, sono permessi valori di n che siano interi e superiori a 2.
Il numero quantico magnetico m assume invece valori interi che vanno da -l a +l passando per lo 0. Dal momento che l è uguale a 2, i valore di m permessi saranno -2; 1; 0; +1; +2.
Risultato:
n>2; l=2; m=-2; -1; 0; +1; +2
Approfondimenti:
Esercizi con relativo svolgimento (link) sulla determinazione dei numeri quantici.
Articolo (link) sulla configurazione elettronica degli elementi della Tavola Periodica.

6 pensieri riguardo “I NUMERI QUANTICI”