CALCOLO DEL pH (basi deboli)

Una base debole si dissocia solo parzialmente in acqua. Per il calcolo del pH occorre tenere conto della sua costante di dissociazione basica (Kb) e della sua concentrazione in soluzione.

Esistono due formule per il calcolo:

  • Una semplificata che si applica per basi molto deboli e concentrate in soluzione.
  • Una estesa che si applica nei casi in cui quella semplificata non è applicabile.

Si consideri la reazione di idrolisi dell’ammoniaca NH3 in acqua:

NH3 + H2O ⇄ NH4+ + OH

La costante di dissociazione basica è espressa dalla seguente formula:

K_{b}= \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}

Dalla stechiometria della reazione si evince che per ogni mole di NH3 che reagisce, si ottiene una mole di NH4+ e una mole di OH.

Il decorso della reazione può essere descritto dai seguenti passaggi:

  1. Al tempo zero t0 è presente solo l’ammoniaca NH3.
  2. La quantità di NH3 che reagisce si indica come -x
  3. La quantità di NH4+ e di OH che si ottengono dalla reazione si indicano come +x.

Si consideri una soluzione contenente ammoniaca in concentrazione 0,1 M. Il decorso della reazione può essere descritto come:

  [NH3]
(mol/L)
 [NH4+]
(mol/L)
[OH]
(mol/L)
t00,100
Quantità che reagisce-x+x+x
Concentrazione all’equilibrio0,1 – x+x+x

La formula della costante d’equilibrio Kb può essere riscritta come:

K_{b}= \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}=\frac{(+x)(+x)}{(0,1-x)}

Se la base è molto debole ed è presente in quantità abbastanza concentrata, la quantità -x è trascurabile rispetto alla concentrazione iniziale.

Pertanto:

K_{b}= \frac{(+x)(+x)}{(0,1-x)}=\frac{(+x)(+x)}{(0,1)}

Posto x = [OH].

x = \sqrt{0,1\cdot K_{b}}

Per l’ammoniaca il valore di Kb = 1,75 · 10-5

[OH^{-}] = \sqrt{0,1\cdot 1,75\cdot 10^{-5}}=1,32\cdot 10^{-3}M

pOH = -log_{10}(1,32\cdot 10^{-3}) = 2,88

pH = 14-pOH = 11,12

La formula per esprimere il pH, nel caso si utilizzi la formula semplificata, è la seguente:

pH = 14-(-log_{10}\sqrt{K_{b}\cdot C_{b}})

Nel calcolo esteso non si considera più -x trascurabile rispetto alla concentrazione iniziale di ammoniaca.

Pertanto:

K_{b}= \frac{(+x)(+x)}{(0,1-x)}

K_{b}\cdot(0,1-x)= x^{2}

1,75\cdot10^{-5}\cdot(0,1-x)= x^{2}

1,75\cdot10^{-6}-1,75\cdot10^{-5}x= x^{2}

x^{2}+1,75\cdot10^{-5}x-1,75\cdot10^{-6}= 0

\Delta = (1,75\cdot10^{-5})^{2}-4\cdot(1)\cdot(-1,75\cdot10^{-6})= 7,00 \cdot10^{-6}

Dal momento che la concentrazione di ioni OH non può essere negativa:

x = \frac{-1,75\cdot 10^{-5}+ \sqrt{7,00\cdot 10^{-6}}}{2}=1,31\cdot 10^{-3}M

pOH = -log_{10}(1,31\cdot 10^{-3}) = 2,88

pH = 14-pOH = 11,22

Dai calcoli si evidenzia come i valori di pH ottenuti dai due procedimenti siano identici. Questo perché l’ammoniaca è una base molto debole ed è presente in quantità abbastanza concentrata.

  • Il calcolo del pH di una base debole prevede un calcolo più complesso rispetto a quello di un acido forte.
  • La formula semplificata si può applicare in caso di basi molto deboli e se presenti in quantità abbastanza concentrata.
  • La formula estesa può essere usata sempre, soprattutto nei casi in cui la formula semplificata non può essere adottata.

Calcolare il pH di una soluzione contenente anilina C6H5NH2 0,01 M. (Kb = 3,82 · 10-10).

Si utilizzi solo la formula semplificata.

La reazione di idrolisi della base può essere scritta come:

C6H5NH2 + H2O ⇄ C6H5NH3+ + OH

Il calcolo del pH, quando si utilizza la formula semplificata, è il seguente:

pH = 14-(-log_{10}\sqrt{K_{b}\cdot C_{b}})

pH = 14-(-log_{10}\sqrt{3,82\cdot10^{-10}\cdot 0,01})=8,29

Lascia un commento