Categoria: CALCOLO DEL pH (acidi deboli)

CALCOLO DEL pH (acidi deboli)

Un acido debole si dissocia solo parzialmente in acqua. Per il calcolo del pH occorre tenere conto della sua costante di dissociazione acida (Ka) e della sua concentrazione in soluzione.

Esistono due formule per il calcolo:

  • Una semplificata che si applica per acidi molto deboli e concentrati in soluzione.
  • Una estesa che si applica nei casi in cui quella semplificata non è applicabile.

Si consideri la reazione di dissociazione dell’acido acetico CH3COOH in acqua:

CH3COOH ⇄ H+ + CH3COO

La costante di dissociazione è espressa dalla seguente formula:

K_{a}= \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}

Dalla stechiometria della reazione si evince che per ogni mole di CH3COOH che reagisce, si ottiene una mole di H+ e una mole di CH3COO.

Il decorso della reazione può essere descritto dai seguenti passaggi:

  1. Al tempo zero t0 è presente solo l’acido acetico CH3COOH.
  2. La quantità di CH3COOH che reagisce si indica come -x
  3. La quantità di H+ e di CH3COO che si ottengono dalla reazione si indicano come +x.

Si consideri una soluzione contenente acido acetico in concentrazione 0,1 M. Il decorso della reazione può essere descritto come:

  [CH3COOH]
(mol/L)
 [H+]
(mol/L)
[CH3COO]
(mol/L)
t00,100
Quantità che reagisce-x+x+x
Concentrazione all’equilibrio0,1 – x+x+x

La formula della costante d’equilibrio Ka può essere riscritta come:

K_{a}= \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]}=\frac{(+x)(+x)}{(0,1-x)}

Se l’acido è molto debole ed è presente in quantità abbastanza concentrata, la quantità -x è trascurabile rispetto alla concentrazione iniziale.

Pertanto:

K_{a}= \frac{(+x)(+x)}{(0,1-x)}=\frac{(+x)(+x)}{(0,1)}

Posto x = [H+].

x = \sqrt{0,1\cdot K_{a}}

Per l’acido acetico Ka = 1,75 · 10-5

[H^{+}] = \sqrt{0,1\cdot 1,75\cdot 10^{-5}}=1,32\cdot 10^{-3}M

pH = -log_{10}(1,32\cdot 10^{-3}) = 2,88

La formula per esprimere il pH, nel caso si utilizzi la formula semplificata, è la seguente:

pH = -log_{10}\sqrt{K_{a}\cdot C_{a}}

Nel calcolo esteso non si considera più -x trascurabile rispetto alla concentrazione iniziale di acido acetico.

Pertanto:

K_{a}= \frac{(+x)(+x)}{(0,1-x)}

K_{a}\cdot(0,1-x)= x^{2}

1,75\cdot10^{-5}\cdot(0,1-x)= x^{2}

1,75\cdot10^{-6}-1,75\cdot10^{-5}x= x^{2}

x^{2}+1,75\cdot10^{-5}x-1,75\cdot10^{-6}= 0

\Delta = (1,75\cdot10^{-5})^{2}-4\cdot(1)\cdot(-1,75\cdot10^{-6})= 7,00 \cdot10^{-6}

Dal momento che la concentrazione di ioni H+ non può essere negativa:

x = \frac{-1,75\cdot 10^{-5}+ \sqrt{7,00\cdot 10^{-6}}}{2}=1,31\cdot 10^{-3}M

pH = -log_{10}(1,31\cdot 10^{-3}) = 2,88

Dai calcoli si evidenzia come i valori di pH ottenuti dai due procedimenti siano identici. Questo perché l’acido acetico è un acido molto debole ed è presente in quantità abbastanza concentrata.

  • Il calcolo del pH di un acido debole prevede un calcolo più complesso rispetto a quello di un acido forte.
  • La formula semplificata si può applicare in caso di acidi molto deboli e se presenti in quantità abbastanza concentrata.
  • La formula estesa può essere usata sempre, soprattutto nei casi in cui la formula semplificata non può essere adottata.

Calcolare il pH di una soluzione contenente HCOOH 0,5 M. (Ka = 1,77 · 10-4).

Si utilizzi solo la formula semplificata.

La reazione di dissociazione dell’acido può essere scritta come:

HCOOH ⇄ H+ + HCOO

La formula per esprimere il pH, quando si utilizza la formula semplificata, è la seguente:

pH = -log_{10}\sqrt{K_{a}\cdot C_{a}}

pH = -log_{10}\sqrt{1,77\cdot10^{-4}\cdot 0,5}=2,03