Tag: Legge di Boyle

LEGGE DI BOYLE

Secondo la legge di Boyle, il volume occupato da un gas ideale, in condizioni isoterme (temperatura costante), è inversamente proporzionale alla pressione a cui il gas è soggetto.

PV = k

  • P è la pressione.
  • V è il volume.
  • k è una costante.

S’immagini di avere delle molecole di gas all’interno di un contenitore a pareti rigide. Da un punto di vista microscopico, la pressione all’interno del contenitore è legata al numero di urti che le molecole esercitano contro le pareti del contenitore. Riducendo il volume del contenitore si assiste a un avvicinamento reciproco delle molecole e al conseguente incremento del numero di urti contro le pareti (Figura 1).

Figura 1 – Effetto di una riduzione del volume sul numero di urti per un gas ideale

Il grafico presente in Figura 2 mostra come per ottenere un raddoppio della pressione occorra un dimezzamento del volume, a un incremento triplo della pressione corrisponda una riduzione di tre volte il volume iniziale e così via.

Figura 2 – Volume di un gas ideale in funzione della sua pressione

A temperatura costante il volume di un gas è direttamente proporzionale al reciproco della pressione applicata (Figura 3).

Figura 3 – Volume di un gas ideale in funzione del reciproco della pressione.

V \;proporzionale\;a\; \frac{1}{P} (a temperatura e n° di moli di gas costanti)

V = k\cdot  \frac{1}{P}

PV = k

Per mantenere costante questo prodotto, è necessario che al raddoppiare di uno vi sia il dimezzamento dell’altro. Questa legge, che prende il nome di Legge di Boyle o legge pressione-volume, vale per tutti i tipi di gas il cui comportamento venga assunto come ideale.

  • La legge di Boyle afferma che il volume occupato da un gas è inversamente proporzione alla pressione a cui è sottoposto in condizioni isoterme.
  • La legge di Boyle si applica a tutti i tipi di gas il cui comportamento venga assunto come ideale.
  • La legge di Boyle rappresenta uno dei capisaldi per la formulazione dell’equazione di stato dei gas ideali o perfetti.

L’EQUAZIONE DI STATO DEI GAS IDEALI

L’equazione di stato dei gas ideali o perfetti mette in relazione le grandezze fisiche di pressone, volume, temperatura, numero di moli.

Il suo enunciato è il seguente:

PV = nRT

  • P = pressione
  • V = volume
  • n = numero di moli
  • R = costante universale dei gas ideali
  • T = temperatura

La costante universale dei gas può assumere valore di 8,314 J/(K·mol) o 0,0821 (L·atm)/(mol·K).

Con R = 8,314 J/(K·mol):

  • La pressione è espressa in Pa
  • Il volume è espresso in m3
  • La temperatura in K

Con R = 0,0821 (L·atm)/(mol·K):

  • La pressione è espressa in atm
  • Il volume è espresso in L
  • La temperatura in K

L’equazione di stato dei gas ideali è stata formulata combinando i seguenti enunciati:

Per il principio di Avogadro il volume è proporzionale al numero di moli (T e P costante).

Per la legge di Boyle il volume è proporzionale a 1/P (n e T costante).

Per la legge di Charles il volume è proporzionale alla temperatura (n e P costante).

Per la legge di Gay-Lussac la pressione è proporzionale alla temperatura (n e V costante).

Combinando le quattro equazioni è possibile ricavare:

V \;proporzionale\; a\; \frac{nT}{P}

Il fattore di proporzionalità è la costante universale dei gas R.

V = \frac{nRT}{P}


Da questa espressione è possibile arrivare all’equazione di stato dei gas ideali:

PV = nRT

  • L’equazione di stato dei gas ideali può essere scritta come PV = nRT.
  • R è la costante universale dei gas ideali.
  • R può assumere valore di 8,314 J/(K·mol) o 0,0821 (L·atm)/(mol·K).